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Spin-Lattice Relaxation of Protons. A General, 
Quantitative Evaluation of Contributions from the 
Intramolecular Dipole-Dipole Mechanism 

Sir: 

The demonstration1"4 of several chemically useful stereo-
specific dependencies for the spin-lattice relaxation times 
(T] values) of the protons of organic molecules provides a 
compelling need for the development of methods for the ac
curate measurement of the relaxation contributions be
tween individual protons via the intramolecular dipole-di-
pole (IDD) mechanism. Although such measurements can 
be made via nuclear Overhauser enhancement (NOE)5 , 6 ex
periments, a number of difficulties somewhat limit the over
all scope of that approach. We now describe an alternative 
method, based on the selective measurement of T] values, 
which appears to have a wide generality. 

For a coupled spin system,7 the relaxation is, in general, 
nonexponential but the initial rate of relaxation, R], is a 
function of the initial perturbation. The conventional two-8 

or three-pulse9 Fourier transform methods, in which a 180° 
pulse inverts the populations of all transitions, provide a 
routine source of the_nonselective R] value, /?iA(NS). A 
different value, R]A(A) is obtained by selective10^13 inver
sion of the spin states of a single nuclear species (A). The 
ratio /? iA (NS)/ /? iA (A) then gives the extent to which that 
particular species is relaxed via dipole-dipole interaction 
with other spins inverted by the nonselective pulse. For 
complete proton dipolar relaxation, this ratio is6 1.5. For a 
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Figure 1. The structure of 3,4,6-tri-0-acetyl-l-O-benzoyl-2-chloro-2-
deoxy-/3-D-glucopyranose showing the initial relaxation rates .Ri(NS) 
(in s - ') for the ring protons. 

sufficiently dilute solution in a magnetically inert solvent, 
only intramolecular dipole-dipole interactions are signifi
cant. Then the fraction of the relaxation of A arising from 
the IDD mechanism is 

_ 2[Zg1A(NS)-Jg1A(A)] 
j ( } " ,R1A(A) (D 

Selective inversion of the nuclei, A and B, gives another 
value for the relaxation rate, .R1A(A7B), and now 

2[Jg1A(A1B)-Jg1A(A)] 
7 W Jg1A(A) 

(2) 

is the fractional contribution to the relaxation of A via dipo
lar interaction with B. 

A practical demonstration both of the ease with which 
these experiments can be performed as well as of the high 
accuracy of the determination is afforded by the data for 
0.1 M 3,4,6-tri-0-acetyl-l-0-benzoyl-2-chloro-2-deoxy-/3-
D-glucopyranose in QD6. For H-I of this molecule, the de
viation from exponential relaxation is sufficiently small that 
the initial rate could be accurately determined from mea
surements taken within 2 s of the perturbation. The nonse
lective R\ values (in s - 1 ) are summarized in Figure 1. Se
lective inversion of H-I gjves a value for .R1

1O) of 0.427 
s - 1 . Thus the ratio R^{\)/Ri1 [NS) is 1.5, which shows 
that this proton receives 100% of its relaxation from the 
other protons in the same molecule. The estimated error in 
the relaxation rate measurements is ±0.005 s - 1 . 

The measured initial relaxation rates for the selective in
version of pairs of protons are /? i ' ( l ,2) = 0.452, R\ 1( 1,3) = 
0.487, and .R1

10,5) = 0.552 s_ 1 . From eq 2 this gives the 
fractional contribution to the relaxation of H-I from H-2, 
H-3, and H-5 as 0.12 ± 0.05, 0.28 ± 0.05, and 0.59 ± 0.05, 
respectively. The ratio of the contributions from H-3 and 
H-5 are in excellent agreement with a similar determination 
from NOE measurements.14 Note that the relaxation mea
surements give a direct indication of the contribution of 
H-2; this contribution was masked in the NOE experi
ment14 by multiple spin effects. 

There are several important molecular and spectral pre
requisites for the simple application of this type of mea
surement. First, it must be possible to use the initial rate ap
proximation." In this regard it should be appreciated that 
for complex spin systems the relaxation can never be truly 
exponential, but very frequently the observed relaxation be
havior following single selective inversion is essentially ex
ponential. This can happen when there are multiple relaxa
tion pathways for all of the interacting nuclei, which is gen
erally the case for complex organic molecules. Furthermore, 
essentially exponential relaxation will be observed following 

multiple-selective inversion if the several nuclei involved 
have approximately the same relaxation rates. We have 
studied other molecules in which the relaxation rates of the 
nuclei involved in the dipolar interaction are very different, 
and here the relaxation behavior is definitely nonexponen-
tial; however, numerical solution of the relaxation equations 
taking into account the different relaxation times allows the 
evaluation of the individual dipolar contributions. 

From a practical standpoint the spectrum itself should be 
sufficiently dispersed that the 180° perturbation can be ap
plied selectively to the chosen resonances.10 

It is interesting to note that the conditions most favorable 
for these relaxation experiments include those for which the 
NOE experiment is, unfortunately, complicated by multiple 
spin effects;6 therefore, the measurement of selective relax
ation rates provides a useful alternative approach for the 
quantitative evaluation of dipole-dipole interactions in 
complex organic molecules. 

In a rigid molecule, the ratio of the dipole-dipole interac
tions between pairs of nuclei is related to the ratio of their 
separations by an inverse sixth power dependence. An inde
pendent measurement of the molecular correlation times, 
for example, from a temperature-dependent study of the re
laxation, would allow a determination of the internuclear 
distances themselves. 
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Chemical Shift Elements for the Aromatic Nitrogen from 
Nuclear Magnetic Resonance Measurements 
on Solutions 

Sir: 

Determination 
shielding tensor, <x 

of the components of the chemical 
and (T j _ , for a nucleus has been possible 
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